
Deep Reinforcement Learning-Based Mapless Crowd Navigation with
Perceived Risk of the Moving Crowd for Mobile Robots

Hafiq Anas, Wee Hong Ong, and Owais Ahmed Malik

Abstract— Current state-of-the-art crowd navigation ap-
proaches are mainly deep reinforcement learning (DRL)-based.
However, DRL-based methods suffer from the issues of gen-
eralization and scalability. To overcome these challenges, we
propose a method that includes a Collision Probability (CP) in
the observation space to give the robot a sense of the level
of danger of the moving crowd to help the robot navigate
safely through crowds with unseen behaviors. By focusing on
the most dangerous obstacle, the robot will not be confused
when the crowd density is high, ensuring scalability of the
model to increasing crowd density. Our approach was developed
using deep reinforcement learning (DRL) and trained using the
Gazebo simulator in a non-cooperative crowd environment with
obstacles moving at randomized speeds and directions. We then
evaluated our model on four different crowd-behavior scenarios
with varying densities of crowds. The results showed that our
method achieved a 100% success rate in all test settings. We
compared our approach with a current state-of-the-art DRL-
based approach, and our approach has performed significantly
better. Importantly, our method is highly generalizable to dif-
ferent crowd behaviors and requires no fine-tuning after being
trained once. We further demonstrated the crowd navigation
capability of our model in real-world tests.

I. INTRODUCTION

In crowd navigation, or social navigation, the classical
navigation approaches of using global and local planners
struggle in highly dense crowded environments and would
often result in the robot being stuck in an endless replanning
state. Recent research works have focused on deep rein-
forcement learning (DRL) methods [1]. Many recent DRL-
based works are mapless and have empirical evidence that
demonstrates the capability of DRL-based approaches with
2D laser scans for crowd navigation [2][3][4][5]. An early
DRL-based solution to address the crowd navigation problem
was the CrowdMove implementation [5]. CrowdMove was
trained and tested in multiple dynamic environments using
commonly used observation states, such as the robot’s own
velocity and relative target goal position. The authors con-
cluded that their robot was able to avoid moving obstacles
in real-world tests and that their trained model could be
generalized to different environment settings unseen during
training. We note that their approach relied on providing
sufficient variation in the training data of multiple dynamic
environments to improve generalization. In a recent work,
Jin et al. [2] proposed that a robot moving in a crowded
environment should have human-awareness competencies.
Therefore, they implemented this through their reward setup

All authors are with School of Digital Science, Universiti Brunei
Darussalam, Jalan Tungku Link, Brunei. hafiq.anas@gmail.com,
[weehong.ong, owais.malik]@ubd.edu.bn

by incorporating two conditions: ego-safety and social-safety
violations. Using this reward setting, they trained their robot
in one crowded environment and tested it in four differ-
ent crowd behavior environments with varying number of
moving obstacles. They achieved significant performance
improvement over the then state-of-the-art DRL-based crowd
navigation method, CADRL [6]. We consider their work
a representative current state-of-the-art in crowd navigation
using 2D laser scans.

Jin et al. [2] used ego and social scores in their reward
function to model human-awareness, but this approach is
limited by the lack of access to such information during
deployment. In this sense, their model will require a large
amount of training to infer the perceived risk from the typical
observation states in different scenarios. Unlike Jin et al.
[2], we incorporate perceived risk or human-awareness into
the observation states, which allows the robot to perceive
potential risk during testing or deployment. In addition, we
have tested our robot at a significantly higher relative speed
of the obstacles to the speed of the robot than in [2]. We
evaluated our approach in different crowd behavior settings
with varying numbers of obstacles at different speeds, and
compared our results with the results of Jin et al. [2] under
the same set of test conditions. The main contributions of
this work are the idea of including risk perception in the
observation space to allow the robot to perceive the danger
level of moving crowds, and focusing on the most dangerous
obstacle to ensure scalability of the model to high density
crowd. We have also verified the ideas through successful
implementations in both simulation and real-world settings.

II. APPROACH
A. Problem Formation

Our proposed method builds upon the techniques used
in the existing DRL-based methods, with an addition of
perceived risk in the observation states and prioritizing the
most dangerous obstacle within a crowd. To determine which
obstacle to prioritize, we compute the collision probability
of all tracked moving obstacles within the robot’s field of
view (FOV) and focus on the obstacle with the highest
probability of collision. Fig. 1 shows the overview of our
deep reinforcement learning (DRL) system. The components
in the system are described in the following subsections.

1) Observation space: The observation space contains
input features to learn as well as perform crowd navigation
behavior that solves both local and global navigation. To
solve the global navigation problem, the information of
relative distance to goal (DTG) and orientation (heading



Fig. 1. Deep Reinforcement Learning system structure.

to goal, HTG) of the target goal location are used as the
goal-related observations og. Meanwhile, ol contains distance
information from the 2D laser scan sensor that describes the
static environment of the robot and is used to solve the local
navigation problem. Given that a crowded environment is
associated with moving obstacles, we added agent-related
observations oa and critical obstacle observation oco to the
observation space. oa contains the robot’s position (Rx,y) and
velocity (Rv) estimated from its encoder and inertia sensor.
oco describes the position (obsx,y) and velocity (obsv) of
the most dangerous moving obstacle (critical obstacle). We
define an observation as o = [ol, og, oa, oco] which describes
the partial environment the robot can observe at a given time.

Obstacles tracking was implemented for obstacle velocity
estimation and computation of Collision Probability (CP)
from the 2D laser scans ol. We define the Collision Prob-
ability (CP) as the sum of two component probabilities: the
probability of collision based on the time to collision (Pc−ttc)
and the probability of collision based on the distance to the
obstacle (Pc−dto). We argue that the addition of distance
to obstacle (dto) information allows the robot to better
perceive the collision probability with a moving obstacle
in the crowd. For example, an obstacle moving slowly near
the robot can still pose substantial risk of collision while an
obstacle moving fast toward the robot from a far distance
is less dangerous. Therefore, a balance between the two CP
components is made as given in (1).

CP = α · Pc−ttc + (1− α) · Pc−dto (1)

where α ∈ [0, 1] is the parameter that decides the weight
of collision probabilities Pc−dto and Pc−ttc. We have set
α = 0.5 in the experiments reported in this paper.

The calculation of collision probabilities uses the Collision
Cone (CC) concept in [7][8]. Pc−ttc is computed based on
time to collision as defined in (2). Pc−dto is computed based
on relative distance to obstacle and defined in (3).

Pc−ttc =

{
min(1, 0.15

t ), if V ′
r ∈ CCro

0 otherwise
(2)

where t is the time-to-collision (TTC) when the relative
velocity V ′

r between the robot and the obstacle lies within

the Collision Cone CCro. V ′
r = Vr − Vo is the resultant

velocity between the robot velocity Vr and obstacle velocity
Vo. t = Disto/V

′
r is the time to collision. CCro is the

collision cone area between the robot and obstacle. Finally,
0.15 corresponds to the timestep value of the robot in seconds
for executing its velocity commands.

Pc−dto =

{
lmax−Disto
lmax−lmin

, if Disto < lmax

0 otherwise
(3)

where lmax and lmin are the maximum and minimum range
of the laser scan respectively. Disto is the distance from the
robot to the obstacle of interest.

CP is computed for each obstacle in the list of tracked
obstacles and the position (obsx,y) and velocity (obsv = Vo)
of the obstacle with the highest CP is included in the
observation space as oco. This obstacle is seen as most
probable to be in collision with the robot.

2) Action space: An action is defined as a = [V l, Vw]
which is sampled from a stochastic policy π given observa-
tion o : a ∼ π(a | o) where V l is the linear velocity within the
range [0, 0.22] ms−1 and Vw is the angular velocity within
the range [-2.0, 2.0] rad.s−1.

3) Reward functions: The reward function consists of the
following terms:

R = Rstep +Rdtg +Rhtg +Rgoal +Rcol (4)

Rstep = −2 is the negative reward given to the robot for
every step and serves to encourage the robot to avoid abusing
the Rdtg and Rhtg rewards by oscillating around the goal
location without reaching it.

Rdtg =

{
+1, if d(r, g)t < d(r, g)t−1

0 otherwise
(5)

Rdtg is the positive reward given to the robot whenever
the distance from the robot to the target goal location d(r, g)
has reduced between the current and previous timestep.

Rhtg =

{
+1, if θ(r, g)t < θ(r, g)t−1

0 otherwise
(6)

Similarly, Rhtg is the positive reward given whenever the
relative heading θ(r, g) has decreased.

Rgoal = +200 is the large positive reward given to the
robot when it reaches the target goal location. If a collision
occurs, a penalty Rcol = −200 is given instead.

B. Deep Reinforcement Learning

We use the Twin Delayed Deep Policy Gradient (TD3) [9]
algorithm with the default parameters to learn the navigation
policy.



Fig. 2. The four crowd behavior settings with 12 obstacles in Gazebo.
Crossing: The robot has to navigate through the crowd moving in the
crossing directions. Towards: The crowd is moving toward the general
direction of the robot. Ahead: The crowd is moving ahead of the robot.
Random: The crowd is moving in random directions.

1) Model training: The robot was trained in the Gazebo
simulator using Robotis TurtleBot3 Burger platform that is
equipped with a LDS-01 360-degree 2D laser scanner and
XL430-W250 encoder motors. The resolution of the laser
scanner is 360 with a minimum and maximum range set to
0.105m and 0.6m respectively. The training process was done
once in a 2m x 2m space with walls and 14 moving obstacles
moving at a random speed of up to 0.2m/s in random
directions. The moving obstacles were non-cooperative so
they will ignore the robot’s presence and can collide with
the robot. The model was trained for 3000 episodes with
the stopping criteria of collision with an obstacle or having
reached the goal.

2) Model testing: The robot was trained in one simulation
setting using TD3 and tested in different crowd behavior
settings. The crowd was non-cooperating.

III. EVALUATION

We evaluated our robot in different crowd behavior en-
vironments similar to [2]: crossing, towards, ahead and
random. For each crowd behavior, the model was tested
with three different crowd densities of four, eight and twelve
obstacles, except the random crowd behavior was only tested
with twelve moving obstacles. This gave a total of ten test
settings. For each crowd behavior setting, we computed the
average of each metric over 10 separate runs. Fig. 2 shows
the four crowd behavior settings with 12 moving obstacles.

To quantify performance, we used the same evaluation
metrics from Jin et al.’s [2] work: success rate (%), arriving
time (s), ego score (0-100) and social score (0-100). Let k be
the number of ego-safety violation steps, and N be the total
steps to reach the goal, then Ego Score = (1−k/N) ∗ 100.
Let m be the number of social-safety violation steps, then
Social Score = (1−m/N) ∗ 100.

An ego-safety violation is determined when an obstacle
comes close to the robot within the ego radius of the robot.
We have set the ego radius 0.787 times of the largest width

of the Turtlebot3 base on the same ratio used in [2]. In [2],
they have determined the social-safety violation when two
rectangular spaces computed from the speed of the robot and
the speed of an obstacle intersect. The rectangular spaces are
similar to the concept of Collision Cone in our case. For the
social-safety violation, we have used the CP to determine if
our robot is in a collision trajectory course with an obstacle
when the CP value is greater than 0.4.

For comparison purposes, we have determined by watch-
ing Jin et al.’s demonstration video [2] that their obstacles
were moving about 5 times slower than the max speed of
their robot (1.5m/s). In our case, we performed two separate
tests in Gazebo with slow-moving and fast-moving obstacles.
The slow-moving obstacles moved at a speed that is 2 times
slower (0.1m/s) than our robot’s max speed (0.22m/s). The
fast-moving obstacles moved at a speed (0.2m/s) that is
nearly the same as our robot’s speed. We believe that in
real-world situations, the crowd would be moving at a speed
close to each other.

In real world test, the robot was tested in the four crowd
behaviors with four obstacles. We have used mobile robots
with similar size to the Turtlebot3 as moving obstacles. The
moving obstacles were manually teleoperated by humans. It
was difficult to teleoperate the obstacles when there are many
of them, hence we have limited the real-world tests to four
obstacles.

IV. RESULTS AND DISCUSSION
A. Crowd Navigation

Fig. 3 shows the evaluation results of our method in
comparison to the results of Jin et al. [2]. Our robot achieved
100% Success Rates (SR) in all test environments. Jin et
al.’s [2] success rates were between 60% to 100% with
only 10 out of 20 tests achieved 100% success rate. We
have observed that our approach did not exhibit freezing
robot problem during training and testing as the robot could
navigate smoothly to the goal positions without getting stuck
in the crowd. In comparison, frequent freezing was observed
when using the ROS Navigation stack in the same crowded
environments.

Our robot took a longer time to reach the goal when the
crowd was more dangerous. The arrival times for the test
environments with fast-moving obstacles (more dangerous)
were in general longer than with slow-moving obstacles.
Likewise, higher crowd density (more dangerous) resulted in
longer arrival time. Exceptions were seen in the ahead crowd
behavior, where the arrival times with fast moving obstacles
ahead were shorter than with slow moving obstacles. When
the obstacles were moving fast ahead of the robot, there was
very little chance of the robot being confronted by the obsta-
cles. The ahead environments were quite safe. Consequently,
there were very few safety violations as seen from the high
ego and social scores in the results of ahead crowd behavior
in Fig. 3. We note the model was not trained with ahead
crowd behavior; however, it has learned to estimate the risk
level given the observation space. While the arrival times of
our robot were longer than the results of [2], we note that



Fig. 3. Comparison between our approach and Jin et al.’s results [2]. Our method was tested with slow- and fast-moving obstacles. The label of the
crowd behavior settings follows the pattern of ”behavior-obstacles”, e.g., crossing-4 is the test environment with crossing crowd behavior and 4 moving
obstacles. The bottom two rows are results of ablation study.

their robot was traveling at a speed (1.5m/s) about 7 times
faster than our robot (0.22m/s). Taking into account the speed
difference, our approach has performed relatively faster and
with higher success rate than the approach of [2].

In addition, we have observed that Ego-safety and social-
safety violations do not necessarily result in collisions. They
are measures of how risky the robot was navigating in the
crowd. Given that in cases where the ego and social scores
were low and the robot was able to successfully navigate
through the crowd, it demonstrated that our robot could take a
higher risk to reach the goal faster given its improved ability
to perceive the risk.

Finally, in real-world tests, we observed similar crowd
navigation capability as in the simulation. However, the
physical robot could not move smoothly at the velocities
setting used in the simulation.

B. Ablation Study

To investigate the effect of the Collision Probability (CP)
(1) and its two components, we trained the model with two
variations: one without Pc−dto (distance to obstacle CP)
component (Model-CP-ttc), and one without CP completely
(Model-no-CP). The results with fast obstacle speed are
shown in bottom two rows in Fig. 3.

As anticipated the Model-no-CP achieved a lower success
rate and was four times slower in arrival time on average than
the model with complete risk perception (full CP, 4th row).
During the tests, the robot was observed to avoid obstacles
altogether by trying to detour. Without CP, the model was not
able to estimate collision risk, so it learned that the best way
to avoid collision was by avoiding the obstacles completely.
Surprisingly, the Model-CP-ttc could only achieve 100%
success rate in 2 out of 10 test conditions. The success rate
was lower than the Model-no-CP. At first sight, it may seem
that CP was not helpful. However, by observing the robot, we
noticed that the robot was attempting to traverse through the
crowd but collided with the obstacles when it was too close
to an obstacle. This resulted in a lower success rate, however
with a significantly faster arrival time than the Model-no-CP.
The Pc−ttc (time to collision CP) alone underestimated the
danger level of the moving obstacles and was insufficient
to perceive the risk during crowd navigation. This caused
the robot to be in a situation where it found itself unable

to avoid a collision which caused the lower average success
rate, especially in higher-density crowd tests (obstacle-12,
ahead-12). The addition of Pc−dto (distance to obstacle CP)
has improved the risk estimation as shown in the superior
performance of the model with full CP (4th rows) with fast
moving obstacles.

V. CONCLUSIONS
We have developed a navigation approach for mobile

robots using 2D laser scans to improve their performance
in crowded environments. Our experiments have shown that
the inclusion of the Collision Probability of the most danger-
ous moving obstacle to the observation space has achieved
outstanding performance in crowd navigation. Our model
was trained in one crowd environment setting and tested on
10 different crowd environment settings. We achieved 100%
success rate in all the 10 environment settings including
the settings in which the obstacles were moving as fast as
the robot. The perception of risk has enabled the robot to
take calculated risk in navigating the crowd. Besides the
superior performance in the simulated environment, we have
also demonstrated the crowd navigation capability of our
model in real-world tests. The robot has shown promising
performance although not as dexterous as in the simulation.
We plan to expand the real-world tests and improve the
real-world performance in our future work. We will also
investigate further ways to incorporate perceived risk or
human awareness in our crowd navigation approach.

The source code and video demonstration of this work are
made publicly available on GitHub [10].

REFERENCES

[1] K. Zhu and T. Zhang, “Deep reinforcement learning based mo-
bile robot navigation: A review,” Tsinghua Science and Technology,
vol. 26, no. 5, pp. 674–691, 2021.

[2] J. Jin, N. M. Nguyen, N. Sakib, D. Graves, H. Yao, and M. Jagersand,
“Mapless navigation among dynamics with social-safety-awareness: a
reinforcement learning approach from 2d laser scans,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 6979–6985.

[3] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 31–36.

[4] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-
driven exploration for mapless navigation with deep reinforcement
learning,” in ICRA 2018 Workshop on Machine Learning in Planning
and Control of Robot Motion, May 2018.



[5] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 6252–6259.

[6] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 285–292.

[7] L. Sun, J. Zhai, and W. Qin, “Crowd navigation in an unknown and
dynamic environment based on deep reinforcement learning,” IEEE
Access, vol. 7, pp. 109 544–109 554, 2019.

[8] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[9] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[10] H. Anas. Deep reinforcement learning based crowd nav-
igation with perceived risk of the moving crowd for
mobile robots. [Online]. Available: https://github.com/ailabspace/
drl-based-mapless-crowd-navigation-with-perceived-risk

https://github.com/ailabspace/drl-based-mapless-crowd-navigation-with-perceived-risk
https://github.com/ailabspace/drl-based-mapless-crowd-navigation-with-perceived-risk

	INTRODUCTION
	APPROACH
	Problem Formation
	Observation space
	Action space
	Reward functions

	Deep Reinforcement Learning
	Model training
	Model testing


	EVALUATION
	RESULTS AND DISCUSSION
	Crowd Navigation
	Ablation Study

	CONCLUSIONS
	References

